

Havelock Wastewater Treatment Plant (WWTP) Schedule 'C' Municipal Class Environmental Assessment

Public Information Centre No. 2

Why Are We Here?

- The Township of Havelock-Belmont-Methuen and the Ontario Clean Water Agency (OCWA) are undertaking a Municipal Class Environmental Assessment Study to complete infrastructure upgrades at the Havelock Wastewater Treatment Plant (WWTP)
- The objectives of this **Public Information Centre** are to:

Provide an update on the project progress

Present the evaluation of design concepts and preferred solutions

Provide an opportunity for the public to get involved in the project

We Need Your Input!

Please review the PIC presentation to learn about the process, the activities completed to date, and the **Preferred Solution being recommended.**

Your opinion is important to us! Members of the project team are available to answer questions via email or telephone.

Please complete the **Online Comment Form** after reviewing the materials.

What is the Purpose of the Study?

- To plan for additional wastewater servicing capacity to support growth in the Village to 2041.
- To identify improvements required at the Havelock Wastewater Treatment Plant to increase its capacity, while minimizing impacts on the natural and sociocultural environments and reducing its life cycle cost

Schedule 'C' Municipal Class EA Process and Timeline

Proposed Growth and Design Flows for the Havelock WWTP

- Planned growth in the Havelock South Development Area
 - 3 phases of residential homes
 - Peterborough Housing Development
 - Havelock Long-Term Care (LTC) Facility
- Additional anticipated growth to 2,400 people in the study area over a 20-year planning period to 2041

Schedule 'C' Municipal Class EA Process and Timeline

Review of PIC No.1 List of Alternative Solutions – Screening Results

#	Alternative Solutions	Screening and Recommendation		
1.	Do Nothing	Eliminated – alternative would lead to non-compliance and plant by-passes with an increased risk of wastewater system failure.		
2.	Limit Community Growth	Eliminated – alternative would not allow for any additional future development beyond the capacity of the WWTP leading to non-compliance with growth objectives.		
3.	Reduce Inflow and Infiltration (I/I)	Eliminated – I/I Control measures already in place. Not recommended as a stand-alone solution. Could be included as part of a preferred solution.		
4.	Expand the Existing Havelock WWTP	CARRIED FORWARD		
5.	Construct a New WWTP on the Existing Site	Eliminated – alternative addresses the need for additional wastewater servicing capacity, but it does not maximize use of existing infrastructure.		
6.	Construct a New WWTP on a New Site	Eliminated – alternative addresses the need for additional wastewater servicing capacity, but it does not maximize use of existing infrastructure.		

Schedule 'C' Municipal Class EA Process and Timeline

Overview of Existing Havelock Wastewater Treatment Plant (WWTP)

Google

- Location: 719 Old Norwood Road
- Rated Capacity: 1,200 m³/d
- Year of Construction:
- 2009

Key Process Components of the Havelock WWTP

Plant Processes

- Raw Sewage Pumping Station
- Septage and Hauled Waste Receiving Facility
- Headworks
- Sequencing Batch Reactor (SBR) Treatment Tanks
- Equalization Tank
- Up-flow Sand Filters
- Chemical Addition for phosphorus removal
- UV Disinfection
- Sludge Treatment
- Outfall pipe to Plato Creek
- Existing lagoons abandoned

Existing Lagoons Havelock WWTP

Overview of Wastewater Treatment Process Process Flowchart

Overview of Wastewater Treatment Process

Overview of Wastewater Treatment Process

Secondary Treatment Technology Review

Secondary Treatment

- Conventional Activated Sludge (CAS)
- Ballasted Activated Sludge
- Biological Phosphorus Removal Using CAS
- Membrane Bioreactor
- Membrane Aerated Biofilm Reactor (MABR)
- Integrated Fixed-Film Activated Sludge / Moving Bed Bioreactor
- Sequencing Batch Reactor (SBR)
- Aerobic Granular Sludge
- Biological Aerated Filter

Overview of Wastewater Treatment Process

Filtration Design Criteria

- Assimilative Capacity Study completed
 - Plato Creek sensitive to phosphorus in the effluent during low flow conditions
- Two WWTP discharge scenarios were considered:
 - **Continuous discharge** requires very strict effluent objectives for total phosphorus
 - Seasonal effluent equalization/storage requires less stringent effluent objectives for total phosphorus

Filtration Technology Review

Filtration

- Deep Bed Filter ★
- Disc Filter
- Membrane Bioreactor (MBR)
- Membrane Filtration
- Two-stage Filtration ★

Overview of Wastewater Treatment Process

Disinfection Technology Review

Disinfection

- Ultraviolet (UV) Disinfection
- Ozone
- Peracetic Acid (PAA)

Overview of Wastewater Treatment Process

Overview of Wastewater Treatment Process

Preliminary Treatment

- Increase raw sewage pump capacity
- Increase screening capacity

Secondary Treatment

• Increase capacity by adding new SBR tank

Filtration

- Increase capacity of existing filtration system
- Add second filtration stage to meet low phosphorus requirements

•Disinfection:

Increase capacity of existing UV system

•Biosolids:

- Additional aerobic digester
- •Additional biosolids storage tank

- Lagoon Modifications
 - Drain/clean/repair decommissioned lagoons
 - New pump station

•Secondary Treatment

Additional SBR train

Additional biosolids storage tank

Design Concept 2 Expand Mechanical Plant Using Lagoon for Influent Equalization

Preliminary Treatment

- Increase raw sewage pump capacity
- Increase screening capacity

- Disinfection
 - Increase UV disinfection capacity

- Lagoon Modifications
 - Drain/clean/repair decommissioned lagoons
 - New pump station

•Biosolids:

- Additional aerobic digester
- •Additional biosolids storage tank

Increase screening capacity

- Disinfection
 - Increase UV disinfection capacity

•Biosolids:

- Additional aerobic digester
- •Additional biosolids storage tank

Detailed Evaluation Criteria

- Public and Operator Health and Safety
- Aesthetic and Operational Impacts
- Construction Impacts
- Archaeological/ Cultural Heritage Features

 Life-cycle Capital and O&M Cost

- Effluent Receiving Water Body Assessment
- Sensitive Natural Features and Regulated Areas
- Climate Change

- Operational Complexity
- Ease of Implementation
- Redundancy and Flexibility
- Energy efficiency
- Constructability
- Regulatory Approvals

Preliminary Evaluation of Design Concepts

Evaluation Criteria	Design Concept 1	Design Concept 2	Design Concept 3	Design Concept 4			
Socio-Cultural Criteria							
Public and Operator Health and Safety	•	•	•	•			
Aesthetic and Operational Impacts	•	0	0	•			
Archaeological/ Cultural Heritage Features	•	•	•	•			
Construction Impacts	•	•	Ð	Ð			
Natural Environmental Criteria							
Effluent Receiving Water Body Assessment	•	Ð	Ð	•			
Sensitive Features and Regulated Areas	•	0		•			
Climate Change	0	•	•	Ð			
Technical Considerations							
Operational Complexity	•	•		Ð			
Ease of Implementation	•	•		Ð			
Redundancy and Flexibility	0	•	Ð	Ð			
Energy Efficiency	•	•		•			
Constructability	\bullet	•	O	•			
Economic Considerations	1						
Capital	•	•	O	\bullet			
O&M Cost	•	O	Ð	•			

Design Concept 2

Use Existing Lagoon for Influent Equalization

- Rehabilitated equalization lagoon
- New lagoon return pump station
- New third SBR train
- New dual staged filters
- No expansion of preliminary treatment and disinfection system required
- Expand biosolids storage
- Other Upgrades (Civil, Mechanical, Electrical, etc.)
- Capital cost **\$14 Million**

What are the Next Steps?

- Determine staging and phasing of upgrade and expansion
- Prepare the Environmental Study Report documenting project information and the decisionmaking process
- Environmental Study Report available for **30-day** *review period for public and agency comment*.

Thank you for Participating! Please Stay Engaged

Please provide your comments by November 22, 2022.

Should you have any questions about this presentation or the project, please contact:

Amber Coupland OCWA Project Manager acoupland@ocwa.com

CIM/

Mina Yousif, M.Eng., P.Eng., PMP CIMA+ Project Manager Mina.Yousif@cima.ca